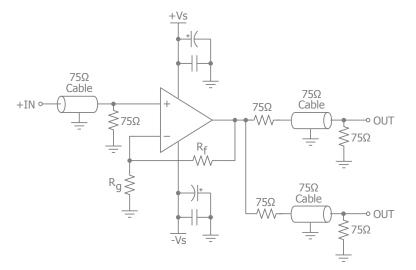


Comlinear[™] CLC1006 Single, 500MHz Voltage Feedback Amplifier

FEATURES

- 500MHz -3dB bandwidth at G=2
- 1,400V/µs slew rate
- 0.06%/0.06° differential gain/ phase error
- 5.5mA supply current
- $6nV/\sqrt{Hz}$ input voltage noise
- 100mA output current
- Fully specified at 5V and ±5V supplies
- CLC1006: Lead-free SOT23-5

APPLICATIONS

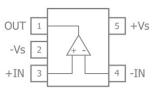

- Video line drivers
- Imaging applications
- Professional cameras
- Differential line receivers
- Photodiode preamps
- Radar or communication receivers

General Description

The *Comlinear* CLC1006 is a high-performance, voltage feedback amplifier that offers bandwidth and slew rate usually found in current feedback amplifiers. The CLC1006 provides 500MHz bandwidth and 1,400V/µs slew rate exceeding the requirements of standard-definition television and other multi-media applications. The *Comlinear* CLC1006 high-performance amplifier also provides ample output current to drive multiple video loads.

The *Comlinear* CLC1006 is designed to operate from \pm 5V or \pm 5V supplies. It consumes only 5.5mA of supply current. The combination of high-speed, excellent video perfomance, and 10ns settling time make the CLC1006 well suited for use in many general purpose, high-speed applications including standard definition video and imaging applications.

Typical Application - Driving Dual Video Loads


Ordering Information

Part Number	Package	Pb-Free	Operating Temperature Range	Packaging Method
CLC1006IST5X*	SOT23-5	Yes	-40°C to +85°C	Reel
CLC1006IST5*	SOT23-5	Yes	-40°C to +85°C	Rail

*Advance Product Information

Moisture sensitivity level for all parts is MSL-1.

CLC1006 Pin Configuration

CLC1006 Pin Assignments

Pin No.	Pin Name	Description
1	OUT	Output
2	-V _S	Negative supply
3	+IN	Positive input
4	-IN	Negative input
5	+V _S	Positive supply

Absolute Maximum Ratings

The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table defines the conditions for actual device operation.

Parameter	Min	Max	Unit
Supply Voltage	0	14	V
Input Voltage Range	-V _s -0.5V	+V _s +0.5V	V

Reliability Information

Parameter	Min	Тур	Max	Unit
Junction Temperature			150	°C
Storage Temperature Range	-65		150	°C
Lead Temperature (Soldering, 10s)			300	°C
Package Thermal Resistance				
5-Lead SOT23		TBD		°C/W

Notes:

Package thermal resistance (θ_{JA}), JDEC standard, multi-layer test boards, still air.

ESD Protection

Product	SOT23-5
Human Body Model (HBM)	2kV
Charged Device Model (CDM)	1kV

Recommended Operating Conditions

Parameter	Min	Тур	Max	Unit
Operating Temperature Range	-40		+85	°C
Supply Voltage Range	4.5		12	V

Electrical Characteristics at +5V

 T_A = 25°C, V_s = +5V, R_f = 150 $\Omega,$ R_L = 150 Ω to $V_S/2,$ G = 2; unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Frequency D	omain Response					
UGBW	-3dB Bandwidth	$G = +1, V_{OUT} = 0.2V_{pp}$		TBD		MHz
BW _{SS}	-3dB Bandwidth	$G = +2, V_{OUT} = 0.2V_{pp}$		400		MHz
BW _{LS}	Large Signal Bandwidth	$G = +2$, $V_{OUT} = 1V_{pp}$		200		MHz
BW _{0.1dBSS}	0.1dB Gain Flatness	$G = +2$, $V_{OUT} = 0.2V_{pp}$		10		MHz
BW _{0.1dBLS}	0.1dB Gain Flatness	$G = +2$, $V_{OUT} = 2V_{pp}$		TBD		MHz
Time Domair	Response					
t _R , t _F	Rise and Fall Time	V _{OUT} = 1V step; (10% to 90%)		2.2		ns
t _s	Settling Time to 0.1%	V _{OUT} = 1V step		10		ns
OS	Overshoot	V _{OUT} = 0.2V step		TBD		%
SR	Slew Rate	2V step		800		V/µs
Distortion/No	pise Response					
HD2	2nd Harmonic Distortion	1V _{pp} , 5MHz		-60		dBc
HD3	3rd Harmonic Distortion	1V _{pp} , 5MHz		-67		dBc
THD	Total Harmonic Distortion	1V _{pp} , 5MHz		-59		dB
IP3	Third-Order Intercept	0.5V _{pp} , 10MHz		35		dBm
SFDR	Spurious-Free Dynamic Range	1V _{pp} , 5MHz		60		dBc
D _G	Differential Gain	NTSC (3.58MHz), DC-coupled, $R_L = 150\Omega$		0.07		%
D _P	Differential Phase	NTSC (3.58MHz), DC-coupled, $R_L = 150\Omega$		0.06		0
e _n	Input Voltage Noise	> 1MHz		6		nV/√Hz
i _n	Input Voltage Noise	> 1MHz		3		pA/√Hz
DC Performa	nce					
V _{IO}	Input Offset Voltage			0		mV
dV _{IO}	Average Drift			6.0		μV/°C
I _{bn}	Input Bias Current			±3.2		μA
dI _b	Average Drift			40		nA/°C
PSRR	Power Supply Rejection Ratio	DC		60		dB
A _{OL}	Open-Loop Gain			TBD		dB
I _S	Supply Current			5.2		mA
Input Charac	teristics					
R _{IN}	Input Resistance	Non-inverting		4.5		MΩ
C _{IN}	Input Capacitance			1.0		pF
CMIR	Common Mode Input Range			±1.5		V
CMRR	Common Mode Rejection Ratio	DC		50		dB
Output Chara	-		1	1		I
R _O	Output Resistance	Closed Loop, DC		0.1		Ω
		$R_{\rm L} = 150\Omega$		±1.5		V
V _{OUT}	Output Voltage Swing	$R_{L} = 1k\Omega$		TBD		V
I _{OUT}	Output Current			±100		mA
I _{SC}	Short-Circuit Output Current	$V_{OUT} = V_S / 2$		TBD		mA

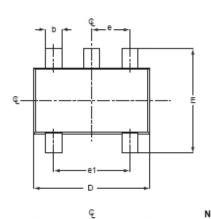
Notes:

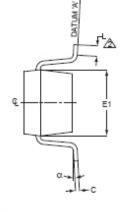
1.

Electrical Characteristics at ±5V

 T_A = 25°C, V_s = ±5V, R_f = 150 $\Omega,\,R_L$ = 150 $\Omega,\,G$ = 2; unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Frequency D	omain Response					
UGBW	-3dB Bandwidth	$G = +1, V_{OUT} = 0.2V_{pp}$		TBD		MHz
BW _{SS}	-3dB Bandwidth	$G = +2, V_{OUT} = 0.2V_{pp}$		500		MHz
BW _{LS}	Large Signal Bandwidth	$G = +2$, $V_{OUT} = 2V_{pp}$		300		MHz
BW _{0.1dBSS}	0.1dB Gain Flatness	$G = +2, V_{OUT} = 0.2V_{pp}$		15		MHz
BW _{0.1dBLS}	0.1dB Gain Flatness	$G = +2$, $V_{OUT} = 2V_{pp}$		TBD		MHz
Time Domain	Response					
t _R , t _F	Rise and Fall Time	V _{OUT} = 2V step; (10% to 90%)		2.4		ns
t _s	Settling Time to 0.1%	V _{OUT} = 2V step		10		ns
OS	Overshoot	V _{OUT} = 0.2V step		TBD		%
SR	Slew Rate	2V step		1400		V/µs
Distortion/No	bise Response					
HD2	2nd Harmonic Distortion	2V _{pp} , 5MHz		-68		dBc
HD3	3rd Harmonic Distortion	2V _{pp} , 5MHz		-63		dBc
THD	Total Harmonic Distortion	2V _{pp} , 5MHz		-62		dB
IP3	Third-Order Intercept	0.5V _{pp} , 10MHz		40		dBm
SFDR	Spurious-Free Dynamic Range	2V _{pp} , 5MHz		63		dBc
D _G	Differential Gain	NTSC (3.58MHz), DC-coupled, $R_L = 150\Omega$		0.06		%
D _P	Differential Phase	NTSC (3.58MHz), DC-coupled, $R_L = 150\Omega$		0.06		0
e _n	Input Voltage Noise	> 1MHz		6		nV/√Hz
i _{ni}	Input Voltage Noise - Inverting	> 1MHz		3		pA/√Hz
DC Performa	nce					
V _{IO}	Input Offset Voltage ⁽¹⁾		-10	0	10	mV
dV _{IO}	Average Drift			6.0		μV/°C
I _b	Input Bias Current (1)		-20	±3.2	20	μA
dI _b	Average Drift			40		nA/°C
PSRR	Power Supply Rejection Ratio (1)	DC	40	60		dB
A _{OL}	Open-Loop Gain			TBD		dB
I _S	Supply Current ⁽¹⁾			5.5	10	mA
Input Charac	teristics					
R _{IN}	Input Resistance	Non-inverting		4.5		MΩ
C _{IN}	Input Capacitance			1.0		pF
CMIR	Common Mode Input Range			±4.0		V
CMRR	Common Mode Rejection Ratio ⁽¹⁾	DC	40	50		dB
Output Chara	-				I	
R _O	Output Resistance	Closed Loop, DC		0.1		Ω
0		$R_{\rm L} = 150\Omega^{(1)}$	±3.0	±4.0		V
V _{OUT}	Output Voltage Swing	$R_{\rm L} = 1 k \Omega$		TBD		V
I _{OUT}	Output Current	<u> </u>		±100		mA
I _{SC}	Short-Circuit Output Current	$V_{OUT} = V_S / 2$		TBD		mA


Notes:


1. 100% tested at 25°C

Mechanical Dimensions

SOT23-5 Package

SOT23-5

SYMBOL	MIN	MAX		
A	0.90	1.45		
A1	0.00	0.15		
A2	0.90	1.30		
b	0.25	0.50		
С	0.09	0.20		
D	2.80	3.10		
E	2.60	3.00		
E1	1.50	1.75		
L	0.35	0.55		
e	0.95 ref			
e1	1.90 ref			
a	0*	10°		

NOTE:

All dimensions are in millimeters.

A Foot length measured reference to flat

foot surface parallel to DATUM 'A' and lead surface.

3. Package outline exclusive of mold flash & metal burr.

- 4. Package outline inclusive of solder plating.
- 5.
- Comply to EIAJ SC74A. Package ST 0003 REV A supercedes SOT-D-2005 REV C. 6.

For additional information regarding our products, please visit CADEKA at: cadeka.com

CADEKA Headquarters Loveland, Colorado T: 970.663.5452 T: 877.663.5415 (toll free)

CADEKA, the CADEKA logo design, and Comlinear and the Comlinear logo design, are trademarks or registered trademarks of CADEKA Microcircuits LLC. All other brand and product names may be trademarks of their respective companies.

CADEKA reserves the right to make changes to any products and services herein at any time without notice. CADEKA does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing by CADEKA; nor does the purchase, lease, or use of a product or service from CADEKA convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual property rights of CADEKA or of third parties.

Copyright ©2007 by CADEKA Microcircuits LLC. All rights reserved.

